218 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL 44, NO 2, FEBRUARY 1996

Mode Scattering by a
Nonlinear Step-Discontinuity in
Dielectric Optical Waveguides

Samir J. Al-Bader and Hussain A. Jamid

Abstract— The scatter of an incident TE; mode at a step-
discontinuity separating linear and nonlinear waveguides is stud-
ied. Under certain conditions the self-focusing nonlinearity is
shown to strongly medify the scattered field in comparison with
the linear counterpart. The stronger effects are shown to occur
when the nonlinear waveguide is operated in the cut-off condition
at low power while supporting a nonlinear guided mode at high
power. The method of lines is used in modeling the structure.

I. INTRODUCTION

NE OF the important problems in dielectric waveguides
()is the accurate description of the field around regions
of abrupt longitudinal changes. Such changes occur in numer-
ous practical situations, often as deliberate design features.
They can be effected by variation in the geometry of the
structure, or its material properties, or both. Examples of
such discontinuities are encountered in cascaded waveguide
sections, waveguide junctions, gratings, stepped transitions,
and dielectric coatings. In integrated optics, the waveguides
are, in the majority of cases, of the open type. The description
of the electromagnetic field scattered by discontinuities must,
therefore. involve the discrete modes and also the continuum
of radiation modes. The general procedure for determining the
reflection. radiation, and transmission characteristics of the
discontinuity in planar structures has been to write the field
components on either side of the discontinuity as a sum of
discrete modes and an integral of radiation modes, and then
to follow one of many approaches to assure the continuity
of the tangential components on the plane of discontinuity
[1]-[11]. Solutions are obtained when certain error criteria are
satisfied. However, such formalism remains valid for linear
structures only and is not immediately applicable, in principle.
to situations in which a nonlinear feature of the structure is
involved. It is the purpose of this work to study the nonlinear
reflection, radiation, and transmission of the guided mode in
a linear-to-nonlinear waveguide cascade.

The last decade has witnessed a rapid increase in interest in
nonlinear optical guided waves. Thin film technology lends
itself well to the fabrication of waveguide components in
which, by virtue of the small dimensions, high power densities
are obtained from relatively low power sources. Nonlinear
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interactions of sufficient magnitude can thus result, giving rise
to important novel signal processing operations. Of interest
to the present work is the nonlinear effect resulting from the
dependence of the dielectric function on the field intensity of
waves of one frequency. For an outlook on recent develop-
ments the reader is referred to [12]. One notes that many
properties of nonlinear guided waves in planar multilayer
structures, as well as their potential applications, have been
reported and questions relating to their stability investigated.
It has become clear that, tor device implementation, materials
with large nonlinear coefficients, small loss and fast response
are required for the proper operation of the isolated device.
Other requirements will also have to be met for the operation
of devices in a system and these are likely to be system-
specific. It turns out. nevertheless, that the above material
requirements are often not concurrently available in important
waveguide materials and trade-offs have to be made as, for
example, between the amount of the intensity-induced refrac-
tive index change and the total loss. The currently considered
materials with potential third-order nonlinear applications to
high speed communication systems include polymers, glasses.
and semiconductors.

The power-dependent transmission of nonlinear waveguides
has been discussed in the past for various longitudinally
uniform and nonuniform waveguide configurations [13]-[15].
To our knowledge, no rigorous analysis of the mode scatter
problem has been given. The transmission of optical power
above a certain threshold in nonlinear waveguides has been
demonstrated theoretically [14]. The power-dependent trans-
mission in a linear-nonlinear-linear waveguide cascade has
been observed experimentally. Waves launched in a linear film
have been made to traverse a small nonlinear section with
liquid crystal MBBA as its upper cladding material [16]. A
drop in the transmitted power with increasing incident power
has been observed in this experiment. In [17], a waveguide
made of 0.7 ym silicon film on sapphire has been used to
experimentally demonstrate the intensity-induced switching of
the guided mode excitation. Utilizing a grating coupler and
operating at photon energies near the bandgap, fast switching
due to electronic and thermal nonlinearities has been observed
to occur with increasing power.

There are two motivations for the present work. The first is
to investigate the inevitable occurrence, in nonlinear circuits
where the signal is serially processed, junctions of waveguides
of different types (linear and nonlinear). It is important for
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this reason to study the nonlinear reflection, transmission, and
radiation properties of guided modes and also to establish
analysis techniques suited for their description.

The second motivation is to examine the introduction of
longitudinal discontinuities for the potential enhancement of
the effects of nonlinearities. In the present work we study the
scatter of the TEy guided mode supported by a linear (input)
waveguide at the junction with an (output) nonlinear one. A
sudden reduction in the width of the nonlinear core of the
latter waveguide or a depression in its index causes it to be
cut-off at low power with the transmitted field being radiative
in character. The nonlinear core is taken to be self-focusing,
so that with increasing input power the output waveguide can
be made to support the nonlinear TEy mode. It will be shown
that both the onset of the change from radiative to guided field
as well as the difference in the available power at a distance
of one millimeter from the junction are influenced by the step
discontinuity and also by the magnitude of the nonlinearity.
We use the method of lines [18], [19] in our analysis and
make no assumptions on the magnitude of the step-change
or the nonlinearity. Formulation of the method of solution
is given in Section III. The results of Section IV show that
the method, used within the self-consistent scheme described
in Section III, is suited to the determination of the various
aspects of the nonlinear field.

II. THEORY

Fig. 1 gives a schematic representation of the structure of
interest. The plane z = 0 separates the linear input dielectric
waveguide (z < 0) from the nonlinear output one (z > 0).
All regions shown in the figure. except that of the core of the
nonlinear waveguide, are assumed to be linear. The core of the
nonlinear waveguide is taken to be nonlinear with its dielectric
function having a saturable self-focusing nonlinearity. The
dielectric function of the core region of the complete structure
is written as,

z<0
£9 =6b+A€(1—e‘|E|2) z>0

€9 = &

@)

where s, = nf and ny is the refractive index of the core region
at low power. The superstrate and substrate have indices given
by n1 and ng, respectively. Our interest is to determine the
spatial distribution of the field throughout the structure when
the TEqg mode is assumed to be incident from the left onto the
plane of discontinuity. The core of the nonlinear waveguide is
made to undergo a sudden reduction in width or depression in
index of sufficient magnitude as to render it to be cut off to
the incident mode at low power.

The effects we study arise as a result of allowing the
power of the incident mode to increase sufficiently so that
the nonlinear TEy mode is supported at the output end of
the nonlinear waveguide. The saturable form of nonlincarity
given by the second of (1), while suppressing the scaling
factor, assumes that the electric field intensity |E|? is scaled
as has been discussed in [20]. The nonlinear response of
different materials is thus accounted for through the scaled
field. Referring to the coordinate system shown in Fig. 1 the
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Fig. 1. Schematic diagram of the structure studied. The TEp

mode 1s assumed to be incident from the left at the discontinuity
plane =z = 0. The parameters used throughout the work are
g1 =1, g5 = 2.3104, 3 = 2.25, A = 1.55 pm and W; = 4 pm.

field components of the TE, mode are: H,.,E,, and H,.
For simplicity of notation we make E, = 1 and write the
Helmholtz equation with the time harmonic variation e ~** as
o2 d?
e+ 2L Ky =0 @)
where kg is the free space wave number and ¢, is the dielectric
constant of any of the regions depicted in Fig. 1.

In the following, we give a formal description of the applica-
tion of the method of lines [19] to (2) without making a specific
reference to either the linear or the nonlinear waveguides. We
also indicate that third-order absorbing boundary conditions
have been incorporated in the calculations of Section III but are
not given in this section. The first step is to reduce the dimen-
sionality of (2) by replacing the variable ¢ in the z-direction
by the vector of discrete values, ¥ = [¢1,%9,---,%n]" and
also by replacing the first term on the left-hand side of (2)
by its central differences approximation. It is noted that the
symbol ¢ here stands for transpose and should not be confused
with the symbol for time. In the approximation made above,
the points 1, 2. - - - | N, marked on the z-axis, enclose the whole
width of the structure of interest. Equation (2) thus becomes

d*y

da?

FQH=0 G)

where

—
|
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where 1,¢e9,---,en are local dielectric constant values read

at the transverse locations of 1,9, +-,%¥y and Az is the
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discretization interval in the z-direction. The formal solution
of (3) is
hlz) = QG + e 9%p. (5)
The first term on the right-hand side represents forward-
going waves while the second term represents backward-going
waves. The vector quantities @ and b are, respectively, the
forward and backward values of ¢ at z = 0. The calculation
of the exponentials in (5) is effected through diagonalizing the
matrix Q2 such that
Q*=Tp*T! (6)
where 7' is a square matrix whose columns are the eigenvectors
of (? while 32 is a diagonal matrix whose diagonal elements
are the eigenvalues of (2. It follows that,

Q="TpT" %)
and
ej:LQZ — Te;tszTfl_ (8)
Making reference to the structure of Fig. 1. there are two
sets of solutions of the type given in (5), one for each of the
two longitudinally uniform regions. Accordingly, the field for
the whole structure can be written as

i = C“LQI'H:C?LH + GZQI'”ZBLH 9

where the subscripts I and II refer to region [ (z < 0) and
region II (z > 0), respectively. We note that the reflected
field in the region z > 0 is zero (by; = 0). Continuity of the
tangential field components at the plane z = 0 allows us to
write the relationship between the transmitted and the incident
fields at this position as

an = (Qr + Qm) " H(2Q1)ar.

The presence of the nonlinearity in the region z > 0
requires special attention in order that the action of the field
on the nonlinear core is accounted for in accordance with
(1). To achieve this and. hence, to assure the continuity of
the tangential field components across the plane z = 0,
calculations are made iteratively and the dielectric function of
the nonlinear core calculated each time at all points within the
core according to the second of (1). In each iteration, therefore,
one obtains a graded-index distribution within the nonlinear
core and a corresponding set of amplitude vectors dr, by, and
ayr- The procedure is started by exciting the structure with the
pre-determined TEg mode of the linear waveguide and initially
overlooking the nonlinear term in the second of (1). It is then
repeated until self-consistent conditions are obtained. Excellent
convergence has been obtained after four or five iterations.

(10)

III. RESULTS AND DISCUSSION

As a consequence of the nonlinearity in the core of the
output waveguide, all of the important parameters in the
description of the structure of Fig. 1, such as the reflectivity
and transmissivity of the mode as well as the radiation field,
are nonlinear. It is necessary, from the outset, to determine
the power-dependent stationary mode behavior of the output

waveguide when isolated from the input one. Although both
the propagation wave vector and the field profile become
power-dependent in the nonlinear waveguide, the important
relationship in the present case is that between the propagation
constant (or mode index) of the nonlinear TE; mode and the
power carried by it. In order to obtain this relationship (also
referred to as the dispersion relationship) the mode is assumed
to vary with distance as e’ where the propagation constant
£ is related to the mode index by 8 = kgne.. In obtaining
the dispersion curves of the nonlinear TEy mode we have
followed the method of solution described by us in [20] and the
interested reader is referred to this reference. In the following
we give results on two types of discontinuity, one resulting
from a change in width of the core of the output waveguide
and the other from a change in its index of refraction.

A. The Geometric Step-Discontinuity

The parameters we have used in this subsection are: ¢; =
1, ep = 23104, €3 = 225, W7 = 4 pym. and A =
1.55 pm. Several values of W5 and Ae have been considered.
Fig. 2 shows the dispersion curves for the following values of
Wy: 1.2 pm,1.35 pm, 2 pm and 4 pm. All curves correspond
to Ae = 0.06. It is noted that the waveguide with Wy =
1.2 pm (broken curve) is below cut-off for the TEy mode
at low input power, while that with W, = 1.35 um (solid
curve) is near cut-off. The rise in mode power observed near
the origin for Wy = 1.2 um is a well-known feature of the
nonlinear TEy mode dispersion when this mode is below cut-
off at low power. Modes falling on this branch have been
shown to be unstable with increasing propagation distance and
are not excited in the present work. The absence of the unstable
branch in the rest of the curves of Fig. 2 is due to the fact that
they correspond to waveguides that are near or above cut-off
at low power. When the incident mode in the input arm of
the structure of Fig. 1 gives rise to a nonlinear guided mode
(beyond a certain transient distance from the step) the mode-
index and mode-power values of the latter define a point on the
dispersion curve. Two such points marked A and B are shown
in Fig. 2 for 1V, = 1.2 ym. They have been obtained by step-
marching the field according to the algorithm described below
for a sufficiently long distance for it to reach the steady state.
The points are also shown in Fig. 3.

Referring to Fig. 2, points A and B, as calculated by the
step-marching algorithm, are seen to exhibit good agreement
with the dispersion curve. Any ditferences that exist are due
to the fact that the dispersion curves are obtained by solving
the eigenvalue equation for stationary nonlinear modes rather
than by step-marching the field. It is noted that whereas point
A corresponds to a well-guided mode, point B corresponds to
a mode that is near cut-off. For the wider core waveguides
Wy = 2 ym and W, = 4 um, the TE; mode is supported
at low power. Each of the two curves for these widths starts
from the linear value of n. and exhibits near proportionality
between mode index and mode power for the range shown.

The action of the nonlinear step discontinuity may be
summarized as follows: a proportion of the incident mode
power is transmitted beyond the plane of the step with the
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Fig. 2. Dispersion curves of the fundamental mode of the nonlinear (output)
waveguide for Ac = 0.06. W5 = 1.2 um (broken curve), Wy = 1.35 um
(solid curve), Wy = 2 pum (dash-dot curve), and W2 = 4 um (dotted curve).
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Fig. 3. The input power-output power relationship of the structure for
Ae = 0.06. Points A and B are also shown m Fig. 2. The transition
from radiative to guided output is seen to occur with increasing input
power. Wo = 1.2 pum (broken curve), Ws = 1.35 um (solid curve),
Wy = 2 pm (dash-dot curve) and Wy = 4 pm (dotted curve). Output
power for Wy = 0.6 pm is of order 10~° throughout.

balance of power being reflected (small for all cases considered
in this work). Of the transmitted power a proportion may
evolve into a stable nonlinear mode—otherwise the whole of
the transmitted power will radiate outwards. The parameters
that determine the outcome of this process are Wy, Ae, and the
incident power. It is noted that for a given value of Ae there
corresponds a minimum value of Wy below which the lincar
mede will not be excited, i.e., the output waveguide remains
cutoff for all incident power levels. This is due to the fact
that we have adopted in this work a saturable nonlinearity
according to which the maximum change in the dielectric
constant ¢, is limited to Ae. For Ae = 0.06 the lowest value
of W5 to support the nonlinear TEq mode is approximately
0.9 pm. As W5 is increased toward Wi the nonlinear guided
mode becomes supported and the structure transforms the

linear input into a nonlinear output mode of approximately
the same power.

The relationship between the linear waveguide mode power
(input power) and the nonlinear power that remains in the
computational window at a distance z = 1 mm (referred
to as the output power) is shown in Fig. 3. The curves for
Ws = 2 ym and Ws = 4 pum exhibit a linear variation of
output power with input power in the range of the figure. The
slopes are determined by scatter and radiation losses. More
detailed variation is shown by the curves for We = 1.35 um
and Wy = 1.2 pym. It is seen that transition mid-power regions
connect near linear high and low power regions. Referring
to the curve for Wy = 1.2 pm, the portion of the curve
between points A and B shows that the nonlinear mode is
supported by the output waveguide. For point B an input
power of 2.63 x 1072 W/um has been found to give rise
to an output power of 7.29 x 103 W/um, while for point A
the corresponding values are 4.63 x 1072 and 14.49 x 1073
respectively. Below point B the field in the output waveguide
is radiative and the incident power is insufficient to cause the
excitation of the nonlinear mode. Point C in Fig. 3 corresponds
to this kind of radiative field and it is for this reason that
point C does not occur on the dispersion curve of Fig. 2 for
Wy = 1.2 pm.

The transition between the low power and the high power
portions of the curves for Wy = 1.35 ym and W7 = 1.2 ym
will be illustrated further with the aid of Fig. 6. We have also
made calculations here for a waveguide whose width is below
the minimum to support a nonlinear mode. The results for
Wy = 0.6 pm have shown that the output power over the
range of input power of Fig. 3 is of order 1075 W/um and is
therefore coincidental with the horizontal axis.

Examination of the influence of the magnitude of the
nonlinearity has been made for Wy = 1.2 pm by calculating
the input power—output power curves for the additional values
of Ae = 0.04 and Ae = 0.02. The results are shown in Fig. 4,
together with those for Ae = 0.06. As in Fig. 3, the transition
toward guided nonlinear modes is noticeable for all cases. The
larger nonlinearity, however, caused faster transitions that also
occurred at lower input power levels.

In order to follow the evolution of the scattered field into
the nonlinear waveguide, calculations have been made of
the profile of transverse electric field components at z =
10, 50,100,520, and 1000 pgm and shown in Fig. 5 (a)—(c).
The algorithm followed is

Pz + Az) = E’Q“AZTZ)H(Z) n

where Qr is calculated locally at dz intervals and one-way
transmission into the nonlinear waveguide assumed. Appli-
cation of this kind of procedure to nonlinear waveguides,
together with a comparison with results obtained by the
Beam Propagation Method are found in a recently published
work [21]. This work, however, considers a longitudinally-
invariant structure. It is seen from Fig. 5(a) (corresponding
to point A in Figs. 2 and 3) and Fig. 5(b) (corresponding to
point B) that sustained power is available at the output in
the shape of a nonlinear guided mode. This is in contrast
to Fig. 5(c) (corresponding to point C in Fig. 3) where the

N
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power becomes depleted in the computational window with
increasing distance.

Fig. 6 shows the variation of the forward radiated power
(as a ratio of input power) with the input power. Values of the
forward radiated power are obtained by subtracting the output
power (at 1 mm distance) from the power transmitted across
the discontinuity plane. Four values of 1, are considered
with Ae = 0.06. It is seen from the figure that almost
all of the incident power for Wy = 0.6 um is forward-
radiated and remains so for the whole range of input power.
In the case of Wy = 2 pm the proportion of the forward-
radiated power shows a small initial drop from the linear value
becoming almost independent of the increasing input power.
In contrast to this behavior, the curves for the intermediate
values of Wy = 1.2 pm and W5 = 1.35 pm exhibit strong
variation in the forward-radiated power. At low input power
the power balance is dominated by forward-radiation. With
increasing input power a larger proportion of the input goes
mto the guided mode with the percentage of radiated power
becoming approximately independent of the input power. A
steep transition is noticeable in each of the two cases with
approximately 30 % change in forward-radiation resulting
from the self-action of the field. As might be expected, Fig. 6
indicates that the two conditions associated with the stronger
changes are (a) that the output waveguide is cut-off at low
power. and (b) that a nonlinear mode is supported at high
power.

The percentage of backward-radiated power has been found
to be small and almost independent of the input power for all
values of Wy considered. as seen from Fig. 7. Calculations for
Wy = 4 pum give a ratio of backward radiation/input power
of order 10~° throughout.

B. The Index Step-Discontinuity

When the waveguides on either side of the discontinuity
are of identical dimensions strong power-dependent changes
can occur when the core index of the output waveguide is
sufficiently depressed that it acts as an anti-guide at low power.
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Fig. 5. (a—(c) Profile of E, in the noolinear waveguide at

10.50.100.520, and 1000 pm. Distances ncrease upwards on
the vertical axis. The power associated with (a)—(c) correspond to those of
pomnt A-C of Fig. 3, respectively. The output waveguide core 15 1.2 gm
and Ae = 006.
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As in Section III-A, self-action of the field is necessary for the
establishment of the nonlinear guided mode with increasing
power. To demonstrate the fast changes that can occur in the
guided and forward radiated power we have adopted Wy =
Wy = 4 pm and used the value Ae = 2.235025 (z > 0)
while retaining all the other parameters of Section III-A.
Fig. 8 shows the output power variation with input power.
Fast changes are seen to separate the radiative and guided
field regions for Ae = 0.06 and Ae = 0.04.

The output power has been found to be very small for
Ae = 0.02. Fig. 9 shows the proportional change in the
forward radiated power. Changes of the order of 90% are seen
to occur with the stronger nonlinearity.

IV. CONCLUSION

The nonlinear scatter of the guided mode at the junction of
linear-to-nonlinear waveguides has been studied as a function
of input power by the method of lines. Both geometric and
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index step changes in the structure have been considered. In
both cases the presence of nonlinearity is shown to modify
the scattered field in comparison with linear behavior. For the
geometric step-discontinuity the modification can be strong
but is found to be dependent on step size. For the input
power range considered, the scattered field of the smallest and
largest step sizes used in the calculations is approximately
that predicted by linear theory. For intermediate step sizes
associated with low power cut-off conditions of the nonlinear
waveguide, substantial modifications of linear results have
been found to occur. Strong changes in the output field
have also been found to occur when the two waveguides
are of identical dimensions but differ a little in their index
distributions.
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