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Mode Scattering by a

Nonlinear Step-Discontinuity in

Dielectric Optical Waveguides
Samir J. A1-Bader and Hussain A. Jamid

Abstract— The scatter of an incident TEo mode at a step-
discontinuity separating linear and nonlinear waveguides is stud-
ied. Under certain conditions the self-focusing nonlinearity is

shown to strongly modify the scattered field in comparison with
the linear counterpart. The stronger effects are shown to occur

when the nonlinear waveguide is operated in the cut-off condition

at low power while supporting a nonlinear guided mode at high

power. The method of lines is used in modeling the structure.

I. INTRODUCTION

o

NE OF the important problems in dielectric waveguides

is the accurate description of the field around regions

of abrupt longitudinal changes. Such changes occur in numer-

ous practical situations, often as deliberate design features.

They can be effected by variation in the geometry of the

structure, or its material properties. or both. Examples of

such discontinuities are encountered in cascaded waveguide

sections, waveguide junctions, gratings, stepped transitions,

and dielectric coatings. In integrated optics, the waveguides

are, in the majority of cases, of the open type. The description

of the electromagnetic field scattered by discontinuities must,

therefore. involve the discrete modes and also the continuum

of radiation modes. The general procedure for determining the

reflection. radiation, and transmission characteristics of the

discontinuity in planar structures has been to write the field

components on either side of the discontinuity as a sum of

discrete modes and an integral of radiation modes, and then

to follow one of many approaches to assure the continuity

of the tangential components on the plane of discontinuity

[1 ]–[ 11]. Solutions are obtained when certain error criteria are

satisfied. However. such formalism remains valid for linear

structures only and is not immediately applicable, in principle,

to situations in which a nonlinear feature of the structure is

involved. It is the purpose of this work to study the nonlinear

reflection, radiation, and transmission of the guided mode in

a linear-to-nonlinear waveguide cascade.

The last decade has witnessed a rapid increase in interest in

nonlinear optical guided waves. Thin film technology lends

itself well to the fabrication of waveguide components in

which, by virtue of the small dimensions, high power densities

are obtained from relatively low power sources. Nonlinear

Manuscript received November 17.1994: revised November 12, 1995. This

work was supported by Kmg Fahd Urnversity of Petroleum and Minerals.
The authors are with Kmg Fahd Umverslty of Petroleum and Minerals,

Dhahran, Saudi Arabia,
Publisher Item Identifier S 0018-9480(96)01446-9,

interactions of sufficient magnitude can thus result, giving rise

to important novel signal processing operations. Of interest

to the present work is the nonlinear effect resulting from the

dependence of the dielectric function on the field intensity of

waves of one frequency. For an outlook on recent develop-

ments the reader is referred to [12]. One notes that many

properties of nonlinear guided waves in planar multilayer

structures, as well as their potential applications, have been

reported and questions relating to their stability investigated.

It has become clear that, for device implementation, materials

with large nonlinear coefficients, small loss and fast response

are required for the proper operation of the isolated device.

Other requirements will also have to be met for the operation

of devices in a system and these are likely to be system-

specific. It turns out. nevertheless, that the above material

requirements are often not concurrently available in important

waveguide materials and trade-offs have to be made as, for

example, between the amount of the intensity-induced refrac-

tive index change and the total loss. The currently considered

materials with potential third-order nonlinear applications to

high speed communication systems include polymers, glasses.

and semiconductors.

The power-dependent transmission of nonlinear waveguides

has been discussed in the past for various longitudinally

uniform and nonuniform waveguide configurations [ 13]–[ 15].

To our knowledge, no rigorous analysis of the mode scatter

problem has been given. The transmission of optical power

above a certain threshold in nonlinear waveguides has been

demonstrated theoretically [14]. The power-dependent trans-

mission in a linear-nonlinear-linear waveguide cascade has

been observed experimentally. Waves launched in a linear film

have been made to traverse a small nonlinear section with

liquid crystal MBBA as its upper cladding material [16]. A

drop in the transmitted power with increasing incident power

has been observed in this experiment. In [17], a waveguide

made of 0.7 ~m silicon film on sapphire has been used to

experimentally demonstrate the intensity-induced switching of

the guided mode excitation. Utilizing a grating coupler and

operating at photon energies near the bandgap, fast switching

due to electronic and thermal nonlinearities has been observed

to occur with increasing power.

There are two motivations for the present work. The first is

to investigate the inevitable occurrence, in nonhnear circuits

where the signal is serially processed, junctions of waveguides

of different types (linear and nonlinear). It is important for
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this reason to study the nonlinear reflection, transmission, and

radiation properties of guided modes and also to establish

analysis techniques suited for their description.

The second motivation is to examine the introduction of

longitudinal discontinuities for the potential enhancement of

the effects of nonlinearities. In the present work we study the

scatter of the TEO guided mode supported by a linear (input)

waveguide at the junction with an (output) nonlinear one. A

sudden reduction in the width of the nonlinear core of the

latter waveguide or a depression in its index causes it to be

cut-off at low power with the transmitted field being radiative

in character. The nonlinear core is taken to be self-focusing,

so that with increasing input power the output waveguide can

be made to support the nonlinear TEO mode. It will be shown

that both the onset of the change from radiative to guided field

as well as the difference in the available power at a distance

of one millimeter from the junction are influenced by the step

discontinuity and also by the magnitude of the nonlinearity.

We use the method of lines [18], [19] in our analysis and

make no assumptions on the magnitude of the step-change

or the nonlinearity. Formulation of the method of solution

is given in Section III. The results of Section IV show that

the method, used within the self-consistent scheme described

in Section III, is suited to the determination of the various

aspects of the nonlinear field.

II. THEORY

Fig. 1 gives a schematic representation of the structure of

interest. The plane z = O separates the linear input dielectric

waveguide (Z < O) from the nonlinear output one (z > O).

All regions shown in the figure, except that of the core of the

nonlinear waveguide, are assumed to be linear. The core of the

nonlinear waveguide is taken to be nonlinear with its dielectric

function having a saturable self-focusing nonlinearity. The

dielectric function of the core region of the complete structure

is written as,

E2 = &b 2<0

(1)

E2 =Eb+~&(l–e–1E12) Z > ()

where &b = n? and nb is the refractive index of the core region

at low power. The superstrata and substrate have indices given

by nl and n3, respectively. Our interest is to determine the

spatial distribution of the field throughout the structure when

the TEO mode is assumed to be incident from the left onto the

plane of discontinuity. The core of the nonlinear waveguide is

made to undergo a sudden reduction in width or depression in

index of sufficient magnitude as to render it to be cut off to

the incident mode at low power.

The effects we study arise as a result of allowing the

power of the incident mode to increase sufficiently so that

the nonlinear TEO mode is supported at the output end of

the nonlinear wavcguide. The saturable form of nonlinearity

given by the second of (l), while suppressing the scaling

factor, assumes that the electric field intensity \E12 is scaled

as has been discussed in [20]. The nonlinear response of

different materials is thus accounted for through the scaled

field. Referring to the coordinate system shown in Fig. 1 the

Air

I
Linear n2 Nonlinear

I
W2

n3

Fig. 1. Schematic diagram of the structure studied. The TEo
mode M assumed to be incident from the left at the discontinuity
plane J = O. The parameters used throughout the work we
cl = 1, sb = 2.3104, :3 = 2.25, A = 1.55 #m and tVl = 4 pm.

field components of the TEO mode are: Hz, Ev, and H..

For simplicity of notation we make Ev = @ and write the

Helmholtz equation with the time harmonic variation e–iut as

(2)

where k. is the free space wave number and En is the dielectric

constant of any of the regions depicted in Fig. 1.

In the following, we give a formal description of the applica-

tion of the method of lines [19] to (2) without making a specific

reference to either the linear or the nonlinear waveguides. We

also indicate that third-order absorbing boundary conditions

have been incorporated in the calculations of Section III but are

not given in this section. The first step is to reduce the dimen-

sionality of (2) by replacing the variable @ in the z-direction

by the vector of discrete values, j = [@l, ~Z,... , UN]* and

also by replacing the first term on the left-hand side of (2)

by its central differences approximation. It is noted that the

symbol there stands for transpose and should not be confused

with the symbol for time. In the approximation made above,

the points 1,2, . ~., N, marked on the x-axis, enclose the whole

width of the structure of interest. Equation (2) thus becomes

where

r–21000

+ k:

101
-510000
O&zooo
. . . ,,
. . . . .

-OO()()EN

–2.

1

(3)

(4)

where &l, &Z, . . . . ~iv are local dielectric constant values read

at the transverse locations of q!q, @2, . . . . ?jN and Ax is the
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discretization interval in the z-direction. The formal solution

of (3) is

i(z) = e’Q’ii + e-’Q’b. (5)

The first term on the right-hand side represents forward-

going waves while the second term represents backward-going

waves. The vector quantities u and b are, respectively, the

forward and backward values of @ at z = O. The calculation

of the exponential in (5) is effected through diagonalizing the

matrix Qz such that

Q2 ~ ~/j2T-l
(6)

where ~ is a square matrix whose columns are the eigenvectors

of Q2 while ~2 is a diagonal matrix whose diagonal elements

are the eigenvalues of Qz. It follows that,

Q = Tpp-1 (7)

and

#L@ _ ~ehlj.~–~
(8)

Making reference to the structure of Fig. 1. there are two

sets of solutions of the type given in (5), one for each of the

two longitudinally uniform regions. Accordingly, the field for

the whole structure can be written as

~),,,, = e’Q’’’’iil ,, + e’Q’’’~G1 ,, (9)

where the subscripts I and II refer to region I (z < O) and

region II ( z > 0), respectively. We note that the reflected

field in the region z >0 is zero (611 = O). Continuity of the

tangential field components at the plane z = O allows us to

write the relationship between the transmitted and the incident

tields at this position as

Z1l = (Q1 + QII)–l(2QI)fiI. (10)

The presence of the nonlinearity in the region z > 0

requires special attention in order that the action of the field

on the nonlinear core is accounted for in accordance with

( 1). To achieve this and. hence, to assure the continuity of

the tangential field components across the plane z = O.

calculations are made iteratively and the dielectric function of

the nonlinear core calculated each time at all points within the

core according to the second of ( 1). In each iteration, therefore,

one obtains a graded-index distribution within the nonlinear

core and a corresponding set of amplitude vectors ~1, 91, and

till. The procedure is started by exciting the structure with the

pre-determined TEO mode of the linear waveguide and initially

overlooking the nonlinear term in the second of ( 1). It is then

repeated until self-consistent conditions are obtained. Excellent

convergence has been obtained after four or five iterations.

III. RESULTS AND DISCCTSSION

As a consequence of the nonlinearity in the core of the

output waveguide, all of the important parameters in the

description of the structure of Fig. 1, such as the reflectivity

and transmissivity of the mode as well as the radiation field,

are nonlinear. It is necessary, from the outset, to determine

the power-dependent stationary mode behavior of the output

waveguide when isolated from the input one. Although both

the propagation wave vector and the field profile become

power-dependent in the nonlinear waveguide, the important

relationship in the present case is that between the propagation

constant (or mode index) of the nonlinear TEO mode and the

power carried by it. In order to obtain this relationship (also

referred to as the dispersion relationship) the mode is assumed

to vary with distance as e’$’ where the propagation constant

~ is related to the mode index by ~ = ken,. In obtaining

the dispersion curves of the nonlinear TEo mode we have

followed the method of solution described by us in [20] and the

interested reader is referred to this reference. In the following

we give results on two types of discontinuity, one resulting

from a change in width of the core of the output waveguide

and the other from a change in its index of refraction.

A. The Geowetric Step-Discontinuity

The parameters we have used in this subsection are: cl =

1, Eb = 2,3104, E3 = 2.25, U71 = 4 ~m. and ~ =

1.55 ~Lm. Several values of W2 and A& have been considered.

Fig, 2 shows the dispersion curves for the following values of

W2: 1.2 ~m, 1.35 ~m, 2 ~~m and 4 #m. All curves correspond

to AE = 0.06. It is noted that the waveguide with W2 =

1.2 pm (broken curve) is below cut-off for the T130 mode

at low input power, while that with W2 = 1.35 pm (solid

curve) is near cut-off. The rise in mode power observed near

the origin for LV2 = 1.2 pm is a well-known feature of the

nonlinear TEO mode dispersion when this mode is below cut-

off at low power. Modes falling on this branch have been

shown to be unstable with increasing propagation distance and

are not excited in the present work. The absence of the unstable

branch in the rest of the curves of Fig. 2 is due to the fact that

they correspond to waveguides that are near or above cut-off

at low power. When the incident mode in the input arm of

the structure of Fig. 1 gives rise to a nonlinear guided mode

(beyond a certain transient distance from the step) the mode-

index and mode-power values of the latter define a point on the

dispersion curve. Two such points marked A and B are shown

in Fig. 2 for JV; = 1.2 pm. They have been obtained by step-

marching the field according to the algorithm described below

for a sufficiently long distance for it to reach the steady state.

The points are also shown in Fig. 3.

Refen-ing to Fig. 2, points A and B, as calculated by the

step-marching algorithm, are seen to exhibit good agreement

with the dispersion curve. Any differences that exist are due

to the fact that the dispersion curves are obtained by solving

the eigenvalue equation for stationary nonlinear modes rather

than by step-marching the field. It is noted that whereas point

A corresponds to a well-guided mode, point B corresponds to

a mode that is near cut-off. For the wider core waveguides

W2 = 2 ,um and Wz = 4 ~m, the TEO mode is supported

at low power. Each of the two curves for these widths starts

from the linear value of n, and exhibits near proportionality

between mode index and mode power for the range shown.

The action of the nonlinear step discontinuity may be

summarized as follows: a proportion of the incident mode

power is transmitted beyond the plane of the step with the
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Fig. 2. Dispersion curves of the fundamental mode of the nonlinear (output)
waveguide for A: = 0.06. W. = 1,2 flm (broken curve), W2 = 1.35 pm
(solid curve), W. = 2 pm (dash-dot curve), and W’z = 4pm (dotted curve).
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Fig, 3. The input power-output power relationship of the structure for

Ae = 0,06, Points A and B are also shown m Fig. 2. The transition
from radiative to guided output is seen to occur with increasing input

power. lt’z = 1.2 pm (broken curve), IlJ2 = 1.35 pm (solid curve),

JVZ = 2 ~m (dash-dot curve) and JVZ = 4 pm (dotted curve). Output
power for \t’z = 0.6 pm is of order 10–5 throughout.

balance of power being reflected (small for all cases considered

in this work). Of the transmitted power a proportion may

evolve into a stable nonlinear mode—otherwise the whole of

the transmitted power will radiate outwards. The parameters

that determine the outcome of this process are Wz, ~E, and the

incident power. It is noted that for a given value of A~ there

corresponds a minimum value of W2 below which the linear

mede will not be excited, i.e., the output waveguide remains

cutoff for all incident power levels. This is due to the fact

that we have adopted in this work a saturable nonlinearity

according to which the maximum change in the dielectric

constant e2 is limited to As. For A: = 0.06 the lowest value

of W’2 to support the nonlinear TEO mode is approximately

0.9 pm. As W2 is increased toward WI the nonlinear guided

mode becomes supported and the structure transforms the

linear input into a nonlinear output mode of approximately

the same power.

The relationship between the linear waveguide mode power

(input power) and the nonlinear power that remains in the

computational window at a distance z = 1 mm (referred

to as the output power) is shown in Fig. 3. The curves for

Wz = 2 ,um and Wz = 4 pm exhibit a linear variation of

output power with input power in the range of the figure. The

slopes are determined by scatter and radiation losses. More

detailed variation is shown by the curves for Wz = 1.35~m

and W2 = 1.2 pm. It is seen that transition mid-power regions

connect near linear high and low power regions. Referring

to the curve for W2 = 1.2 pm, the portion of the curve

between points A and B shows that the nonlinear mode is

supported by the output waveguide. For point B an input

power of 2.63 x 10–2 W/pm has been found to give rise

to an output power of 7.29 x 10–3 W/pm, while for point A

the corresponding values are 4.63 x 10–2 and 14.49 x 10–3

respectively. Below point B the field in the output waveguide

is radiative and the incident power is insufficient to cause the

excitation of the nonlinear mode. Point C in Fig. 3 corresponds

to this kind of radiative field and it is for this reason that

point C does not occur on the dispersion curve of Fig. 2 for

W2 = 1.2 flm.

The transition between the low power and the high power

portions of the curves for Wz = 1.35 ~m and W’.. = 1.2 pm

will be illustrated further with the aid of Fig, 6. We have also

made calculations here for a waveguide whose width is below

the minimum to support a nonlinear mode. The results for

W2 = 0.6 ~m have shown that the output power over the

range of input power of Fig. 3 is of order 10–5 W/pm and is

therefore coincidental with the horizontal axis.

Examination of the influence of the magnitude of the

nonlinearity has been made for W2 = 1.2 pm by calculating

the input power–output power curves for the additional vahtes

of ~E = O.(PI and ~E = 0.02. The results are shown in Fig. 4,

together with those for A& = 0.06. As in Fig. 3, the transition

toward guided nonlinear modes is noticeable for all cases. The

larger nonlinearity, however, caused faster transitions that also

occurred at lower input power levels.

In order to follow the evolution of the scattered field into

the nonlinear waveguide, calculations have been made of

the profile of transverse electric field components at .z =

10,50,100,520, and 1000 #m and shown in Fig. 5 (a)-(c).

The algorithm followed is

jII(.Z + Az) = e’Q1lA’&l(.z) (11)

where Q1l is calculated locally at dz intervals and one-way

transmission into the nonlinear waveguide assumed. Appli-

cation of this kind of procedure to nonlinear waveguides,

together with a comparison with results obtained by the

Beam Propagation Method are found in a recently published

work [21]. This work, however, considers a longitudinally-

invariant structure. It is seen from Fig, 5(a) (corresponding

to point A in Figs. 2 and 3) and Fig. 5(b) (corresponding to

point B) that sustained power is available at the output in

the shape of a nonlinear guided mode. This is in contrast

to Fig. 5(c) (corresponding to point C in Fig. 3) where the
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Fig 4 Input power versus output power for It”! = 1.2 pm. As = O 02

(solid cur>e), A= = O 0-4 (broken curve) and A: = 0.06 (dotted curve).

power becomes depleted in the computational window with

increasing distance.

Fig. 6 shows the variation of the forward radiated power

(as a ratio of input power) with the input power. Values of the

forward radiated power are obtained by subtracting the output

power (at 1 mm distance) from the power transmitted across

the discontinuity plane. Four values of JV2 are considered

with A~ = 0.06. It is seen from the figure that almost

all of the incident power for IV2 = 0.6 pm is forward-

radiated and remains so for the whole range of input power.

In the case of 11’2 = 2 pm the proportion of the forward-

radiated power shows a small initial drop from the linear value

becoming almost independent of the increasing input power.

In contrast to this behavior, the curves for the intermediate

values of 1’1’2 = 1.2 pm and It’q = 1.35 pm exhibit strong

variation in the forward-radiated power. At low input power

the power balance is dominated by forward-radiation. With

increasing input power a larger proportion of the input goes

mto the guided mode with the percentage of radiated power

becoming approximately independent of the input power, A

steep transition is noticeable in each of the two cases with

approximately 30 % change in forward-radiation resulting

from the self-action of the field, As might be expected, Fig. 6

indicates that the two conditions associated with the stronger

changes are (a) that the output waveguide is cut-off at low

power, and (b) that a nonlinear mode is supported at high

power.

The percentage of backward-radiated power has been found

to be small and almost independent of the input power for all

values of JV2 considered, as seen from Fig. 7. Calculations for

JVZ = 4 ~bm give a ratio of backward radiationlinput power

of order 10– 5 throughout.

B. The Index Step-Discontinuity

When the waveguides on either side of the discontinuity

are of identical dimensions strong power-dependent changes

can occur when the core index of the output waveguide is

sufficiently depressed that it acts as an anti-guide at low power.

-5 0 5 10 15

x (micrometer)

(a)

x (micrometer)

(b)

I

/-

.

-5 0 5 10 15

x (micrometer)

(c)

Fig. 5. (a)–(c) Profile of E~ in the nonhnear waveguide at
: = 10.50.100.520, and 1000 pm. Distances increase upwards on
the vertical ~xis. The power associated with (I)–(c) correspond to those of
point A-C of Fig. 3, respect wely. The output wavegmde core M 1.2 pm
and Ae = O 06.
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Fig. 7. Ratio of the backward radiated power to the incident power as a
function of the incident power. All parameters are as in Fig. 6.

As in Section III-A, self-action of the field is necessary for the

establishment of the nonlinear guided mode with increasing

power. To demonstrate the fast changes that can occur in the

guided and forward radiated power we have adopted WI =

WZ = 4 Mm and used the value As = 2.235025 (z > O)

while retaining all the other parameters of Section III-A.

Fig. 8 shows the output power variation with input power.

Fast changes are seen to separate the radiative and guided

field regions for ~E = 0.06 and A& = 0.04.

The output power has been found to be very small for

~E = 0.02. Fig. 9 shows the proportional change in the

forward radiated power. Changes of the order of 90~0 are seen

to occur with the stronger nonlinearity.

IV. CONCLUSION

The nonlinear scatter of the guided mode at the junction of

linear-to-nonlinear waveguides has been studied as a function

of input power by the method of lines. Both geometric and

Oo,r-—l

&=ooz

i
n Q01 002 003 004 005. .

Input Powar (Watffmrxometer)

Fig. 8. The input power-output power relationship for IJI’I = JVZ = 4 #m.
The core dielectric constant eb = 1.4952(: > O). Other parameters are as
in Fig. 6.
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I

AC=O06 AE.004

1

>1
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Input Power (WaU/micrometer)

Fig. 9. Ratio of the forward radiated power to the incident power. The
parameters are as m Fig. 8.

index step changes in the structure have been considered. In

both cases the presence of nonlinearity is shown to modify

the scattered field in comparison with linear behavior. For the

geometric step-discontinuity the modification can be strong

but is found to be dependent on step size. For the input

power range considered, the scattered field of the smallest and

largest step sizes used in the calculations is approximately

that predicted by linear theory. For intermediate step sizes

associated with low power cut-off conditions of the nonlinear

waveguide, substantial modifications of linear results have

been found to occur. Strong changes in the output field

have also been found to occur when the two waveguides

are of identical dimensions but differ a little in their index

distributions.
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